References
Green, M. A. et al. Solar cell efficiency tables (version 49). Prog. Photovoltaics Res. Appl. 25, 3–13 (2016).
Pal, K. et al. Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: a review. Sol. Energy Mater. Sol. Cells 196, 138–156 (2019).
Kirchartz, T. et al. What makes a good solar cell? Adv. Energy Mater. 8, 1703385 (2018).
Baid, M. et al. A comprehensive review on Cu2ZnSnS4 (CZTS) thin film for solar cell: forecast issues and future anticipation. Opt. Quantum Electron. 53, 656 (2021).
Green, M. A. et al. Solar cell efficiency tables (version 64). Prog. Photovoltaics Res. Appl. 32, 425–441 (2024).
Su, Z. et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution. Adv. Mater. 32, e2000121 (2020).
Shi, J. et al. Multinary alloying for facilitated cation exchange and suppressed defect formation in kesterite solar cells with above 14% certified efficiency. Nat. Energy 9, 1095–1104 (2024).
Wang, W. et al. Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2013).
Yan, C. et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 3, 764–772 (2018).
Gong, Y. et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V. Sci. China Mater. 64, 52–60 (2020).
Chen, S. et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013).
Scragg, J. J. et al. Effects of back contact instability on Cu2ZnSnS4 devices and processes. Chem. Mater. 25, 3162–3171 (2013).
Karade, V. et al. Insights into kesterite’s back contact interface: a status review. Sol. Energy Mater. Sol. Cells 200, 109911 (2019).
Crovetto, A. et al. What is the band alignment of Cu2ZnSnS(Se)4 solar cells? Sol. Energy Mater. Sol. Cells 169, 177–194 (2017).
Kim, S. et al. Identification of killer defects in kesterite thin-film solar cells. ACS Energy Lett. 3, 496–500 (2018).
Duan, B. et al. Underlying mechanism of the efficiency loss in CZTSSe solar cells: disorder and deep defects. Sci. China Mater. 63, 2371–2396 (2020).
Nisika et al. Progress and prospects of CZTSSe/CdS interface engineering to combat high open-circuit voltage deficit of kesterite photovoltaics: a critical review. J. Mater. Chem. A 8, 21547–21584 (2020).
Zhou, J. et al. Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency. Nat. Energy 8, 526–535 (2023).
Gong, Y. et al. Ag incorporation with controlled grain growth enables 12.5% efficient kesterite solar cell with open circuit voltage reached 64.2% Shockley–Queisser limit. Adv. Funct. Mater. 31, 2101927 (2021).
Gong, Y. et al. Identifying the origin of the VOC deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution. Energy Environ. Sci. 14, 2369–2380 (2021).
Liu, F. et al. Nanoscale microstructure and chemistry of Cu2ZnSnS4/CdS interface in kesterite Cu2ZnSnS4 solar cells. Adv. Energy Mater. 6, 1600706 (2016).
Fan, P. et al. Enhancing Ag-alloyed Cu2ZnSnS4 solar cell performance by interfacial modification via In and Al. J. Mater. Chem. A 9, 25196–25207 (2021).
Yin, W. J. et al. Engineering grain boundaries in Cu2ZnSnSe4 for better cell performance: a first‐principle study. Adv. Energy Mater. 4, 1300712 (2013).
Gokmen, T. et al. Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett. 103, 103506 (2013).
Li, J. et al. Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnS4 solar cells. Nat. Energy 7, 754–764 (2022).
Grossberg, M. et al. Photoluminescence study of defect clusters in Cu2ZnSnS4 polycrystals. Curr. Appl. Phys. 14, 447–450 (2014).
Nellist, P. D. & Pennycook, S. J. Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999).
Rafferty, B. et al. On the origin of transverse incoherence in Z-contrast STEM. J. Electron Microsc. 50, 227–233 (2001).
Maticiuc, N. et al. XPS study of OH impurity in solution processed CdS thin films. Sol. Energy Mater. Sol. Cells 160, 211–216 (2017).
Zhou, S. et al. Accelerating electron-transfer and tuning product selectivity through surficial vacancy engineering on CZTS/CdS for photoelectrochemical CO2 reduction. Small 17, e2100496 (2021).
Fumitaka Goto, K. S. Masaya Ichimura defect reduction in electrochemically deposited CdS thin films by annealing in O2. Sol. Energy Mater. Sol. Cells 50, 147–153 (1998).
Grini, S. et al. Strong interplay between sodium and oxygen in kesterite absorbers: complex formation, incorporation, and tailoring depth distributions. Adv. Energy Mater. 9, 1900740 (2019).
Sardashti, K. et al. Impact of nanoscale elemental distribution in high‐performance kesterite solar cells. Adv. Energy Mater. 5, 1402180 (2015).
Yu, Z. et al. Unveiling the selenization reaction mechanisms in ambient air‐processed highly efficient kesterite solar cells. Adv. Energy Mater. 13, 2300521 (2023).
Li, W. et al. Tuning band alignment at grain boundaries for efficiency enhancement in Cu2ZnSnS4 solar cells. ACS Nano 17, 15742–15750 (2023).
Lou, L. et al. Crown ether-assisted colloidal ZnO window layer engineering for efficient kesterite (Ag,Cu)2ZnSn(S,Se)4 solar cells. ACS Energy Lett. 8, 3775–3783 (2023).
Chen, G. et al. Suppressing buried interface nonradiative recombination losses toward high-efficiency antimony triselenide solar cells. Adv. Mater. 36, e2308522 (2024).
Heath, J. T. et al. Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95, 1000–1010 (2004).
Tao, J. et al. Solution-processed SnO2 interfacial layer for highly efficient Sb2Se3 thin film solar cells. Nano Energy 60, 802–809 (2019).
Shi, J. et al. Opto-electro-modulated transient photovoltage and photocurrent system for investigation of charge transport and recombination in solar cells. Rev. Sci. Instrum. 87, 123107 (2016).
Shi, J. et al. From ultrafast to ultraslow: charge-carrier dynamics of perovskite solar cells. Joule 2, 879–901 (2018).
Li, Y. et al. Exploiting electrical transients to quantify charge loss in solar cells. Joule 4, 472–489 (2020).
Fan, P. et al. Over 10% efficient Cu2CdSnS4 solar cells fabricated from optimized sulfurization. Adv. Funct. Mater. 32, 2207470 (2022).
Tang, R. et al. Heterojunction annealing enabling record open-circuit voltage in antimony triselenide solar cells. Adv. Mater. 34, e2109078 (2022).
Qi, Y. et al. Synergistic effect of Mn on bandgap fluctuations and surface electrical characteristics in Ag-based Cu2ZnSn(S,Se)4 solar cells. J. Mater. Chem. A 9, 2292–2300 (2021).
Xie, W. et al. 10.24% efficiency of flexible Cu2ZnSn(S,Se)4 solar cells by pre-evaporation selenization technique. Small 18, e2201347 (2022).